ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Теплосчетчики СТУ-1 Модель 3

Назначение средства измерений

Теплосчетчики СТУ-1 Модель 3 предназначены для измерения количества тепловой энергии, тепловой мощности, объемного (массового) расхода, объема (массы), температуры, давления теплоносителя в закрытых и открытых системах теплоснабжения, а так же количества других измеряемых сред.

Описание средства измерений

Принцип действия теплосчетчиков основан на измерении времени распространения ультразвуковых импульсов в потоке теплоносителя через ультразвуковые преобразователи расхода, которые работают попеременно в режиме приемник-излучатель. Скорость распространения ультразвукового сигнала в теплоносителе, заполняющему трубопровод, представляет собой сумму скоростей ультразвука в неподвижном теплоносителе и скорости потока теплоносителя в проекции на рассматриваемое направление распространения ультразвука. Время распространения ультразвукового импульса зависит от скорости движения теплоносителя.

В состав теплосчетчиков входят:

- от одного до четырех ультразвуковых преобразователя расхода (УПР) или от одной до четырех пар монтируемых на поверхности трубопровода пьезоэлектрических преобразователя (ПЭП);
 - электронный блок (ЭБ);
- четыре пары подобранных преобразователей температуры сопротивления (ПТС);
 - кабель частотный РК-50;
 - кабель КММ;
 - четыре преобразователя давления;
 - модем (GSM/GPRS модем);
 - пульт накопительный.

Акустические оси, состоящие каждая из пары ПЭП, могут располагаться на УПР либо по диаметру (одна ось), либо по двум взаимно перпендикулярным диаметрам в одной плоскости (две оси), либо по одной хорде (одна ось), либо по двум хордам (верхняя и нижняя оси), либо по двум взаимно перпендикулярным хордам в одной плоскости (две оси), либо по четырем хордам (четыре оси). УПР измеряют расход теплоносителя, соответственно по подающему и обратному трубопроводам первого (ТВ1) и/или второго теплового ввода (ТВ2) и/или измерения расхода горячей и холодной воды (в ТВ и/или ТВ2).

Электронный блок теплосчетчика формирует импульсы, поступающие на пьезоэлектрические преобразователи ПЭП1 (ПЭП3, ПЭП5, ПЭП7). ПЭП1 (ПЭП3, ПЭП5, ПЭП7) преобразуют электрический импульс в акустический ультразвуковой импульс (УЗИ), излучаемый в измеряемую среду, например по потоку. Задержанный ультразвуковой сигнал, полученный от пьезоэлектрических преобразователей ПЭП2 (ПЭП4, ПЭП6, ПЭП8), преобразуясь в электрический сигнал, поступает в электронный блок для обработки. Затем процесс измерения расхода повторяется с той разницей, что преобразователи ПЭП1 (ПЭП3, ПЭП5, ПЭП7) становятся приемниками УЗИ, а ПЭП2 (ПЭП4, ПЭП6, ПЭП8) – излучателями против потока. Электронный блок измеряет время задержки распространения сигнала по и против потока, вычисляет мгновенный объемный и массовый расходы, накопленные объемы в м³ и в тоннах, формирует архив данных.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астараань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4332)59-03-52 Владивосток (4332)49-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)20-60-1-48 Калиниград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новосибирск (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казахстан (772)734-952-31 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Таджикистан (992)427-82-92-69 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томек (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновек (8422)24-23-59 Уфа (347)229-48-12 Хабаровек (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93 Величина температуры теплоносителя, полученная от платиновых преобразователей температуры ПТС1, ПТС2, ПТС3, ПТС4 в виде омического сопротивления, поступает в электронный блок для обработки. Полученная информация преобразуется, отображается на ЖКИ и архивируется.

Величина избыточного давления, полученная от преобразователей давления ПД1, ПД2, ПД3, ПД4 в виде нормированных токовых сигналов 4-20 мА, поступает в электронный, где преобразуется, отображается на ЖКИ, архивируется.

Полученная информация о массовом расходе, температуре и давлении используется для расчета тепловой мощности и количества тепловой энергии по соответствующему алгоритму.

Текущая, накопленная информация и значения программируемых параметров индицируются на ЖКИ и выводятся для внешних потребителей информации через интерфейсные выходы USB, RS 232,RS 485, приемопередатчик радиоканала, сервер Ethernet.

Теплосчетчики выпускаются трех моделей: Модель 3.1, Модель 3.2, Модель 3.3, которые отличаются друг от друга количеством подключаемых ультразвуковых преобразователей расхода, преобразователей температуры сопротивления, преобразователей давления, а также возможностью подключения внешних счетчиков воды или расходомеров с импульсными или частотными выходами.

Рисунок 1 - Общий вид теплосчетчиков СТУ-1 Модель 3

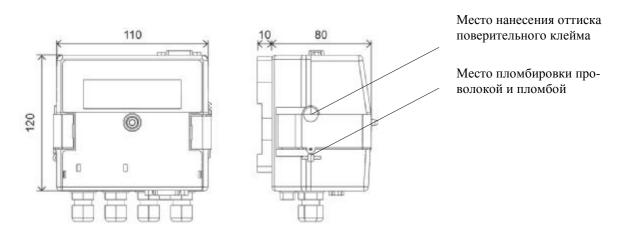
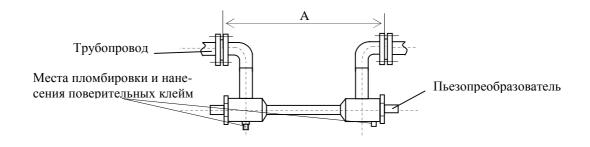



Рисунок 2 - Схема пломбировки электронного блока

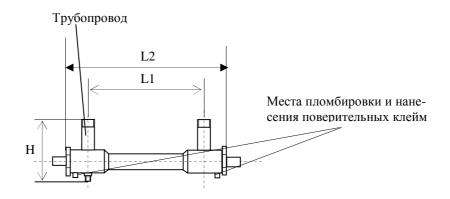


Рисунок 3 – Схема пломбировки ультразвуковых преобразователей расхода

Программное обеспечение

Программное обеспечение (ПО) теплосчетчиков СТУ-1 Модели 3 по аппаратному обеспечению является встроенным. Преобразование измеряемых величин и обработка измерительных данных выполняется с использованием внутренних аппаратных и программных средств. ПО хранится в энергонезависимой памяти. Программная среда постоянна, отсутствуют средства и пользовательская оболочка для программирования или изменения ПО.

Программное обеспечение средства измерения разделено на:

- метрологически значимую часть;
- метрологически незначимую часть.

Разделение программного обеспечения выполнено внутри кода ПО на уровне языка программирования. К метрологически значимой части ПО относятся:

- программные модули, принимающие участие в обработке (расчетах) результатов измерений или влияющие на них;
- программные модули, осуществляющие отображение измерительной информации, её хранение, защиту ПО и данных;
- параметры ПО, участвующие в вычислениях и влияющие на результат измерений;
- компоненты защищенного интерфейса для обмена данными между средством измерения и внешними устройствами.

Идентификационные данные программного обеспечения приведены в таблице 1.

Τ	a	б	Л	И	Ц	a	1

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	STU-3
Номер версии (идентификационный номер) ПО	4.018
Цифровой идентификатор ПО	4541
Другие идентификационные данные	_

Метрологические характеристики теплосчетчиков нормированы с учетом влияния программного обеспечения.

Уровень защиты программного обеспечения от преднамеренных изменений соответствует уровню «высокий» согласно Р 50.2.077-2014. На теплосчетчиках предусмотрена надежная защита от несанкционированных вмешательств в работу прибора, которые могут привести к искажению результатов измерений, а именно:

- введение соответствующего пароля;
- ведение архивов нештатных ситуаций и изменений с указанием времени и даты.

Программирование теплосчетчиков может быть произведено только после вскрытия пломб на крышке корпуса теплосчетчиков.

Метрологические и технические характеристики

Пределы допускаемой относительной погрешности теплосчетчиков при измерении количества тепловой энергии, в зависимости от разности температур Δ Θ в подающем и обратном трубопроводах, приведены в таблице 2

Таблица2

Разность температур $\Delta\Theta$	Пределы допускаемой относительной погрешности, %
$3 {}^{0}\mathrm{C} < \Delta \Theta \leq 10 {}^{0}\mathrm{C}$	±6 (±5)
10^{0} C $< \Delta \Theta \le 20^{0}$ C	±5 (±4)
$20^{0}\text{C} < \Delta\ \Theta \le 145^{0}\text{C}$	±4 (±3)

П р и м е ч а н и е - в скобках указаны значения погрешности при поверке теплосчетчиков проливным способом, остальные значения - беспроливным способом по документу "Инструкция. ГСИ. Теплосчетчики СТУ-1. Модель 3. Методика поверки. ТЕСС 00.030.00 МП".

Пределы допускаемой относительной погрешности теплосчетчиков при измерении объемного (массового) расхода и объема (массы), приведены в таблице 3

Таблица 3

		Пределы допускаемой относительной погрешности,			
Номинальные диа-	Диапазон	%, при измерении:			
метры	изменения	объемного (ма			
УПР, мм	расхода	по индикатору	по импульсному	объема (массы)	
		по индикатору	выходу		
	I	$(\pm 1,0)$	$(\pm 1,0)$	$(\pm 1,0)$	
DN 15-40	II	$(\pm 1,5)$	$(\pm 1,5)$	$(\pm 1,5)$	
	III	$(\pm 2,0)$	$(\pm 2,0)$	$(\pm 2,0)$	
	I	±1,0(±1,0)	$\pm 1,0(\pm 1,0)$	$\pm 1,0(\pm 1,0)$	
DN50-DN200	II	±1,5(±1,3)	$\pm 1,5(\pm 1,3)$	$\pm 1,5(\pm 1,3)$	
	III	±2,0(±1,5)	$\pm 2,0(\pm 1,5)$	$\pm 2,0(\pm 1,5)$	
	I	±1,0	±1,0	±1,0	
DN≥200	II	±1,5	±1,5	±1,5	
	III	±2,0	±2,0	±2,0	

Примечания

2 Погрешности указаны для диапазонов объемного расхода q_s, q_t, q_i :

I $q_s/10 \le q \le q_s$

II $q_t \le q < q_s/10$

III $q_i \le q < q_t$

¹ В скобках указаны значения погрешности при поверке теплосчетчика проливным способом, остальные значения - беспроливным способом по документу "Инструкция. ГСИ. Теплосчетчики СТУ-1. Модель 3. Методика поверки. ТЕСС 00.030.03 МП";

Номинальный диаметр, DN Диапазон расходов, м ³ /ч	15 - 1800 от 0,03 до 97200
Пределы допускаемой относительной погрешности ЭБ при преобразовании входных сигналов и индикации, %	
разовании входных сигналов и индикации, 70 - расхода	±0,5
- объема	±0,6
- времени распространения ультразвуковых импульсов	± 0.4
- времени наработки	$\pm 0,1$
- тепловой мощности	± 0.8
- тепловой энергии при: 3 °C ≤ Δ T ≤ 10 °C	±1,0
$10 ^{\circ}\text{C} \le \Delta T \le 20 ^{\circ}\text{C}$	$\pm 0,8$
$20 ^{\circ}\text{C} \le \Delta \text{T} \le 145 ^{\circ}\text{C}$	$\pm 0,6$
Пределы допускаемой абсолютной погрешности ЭБ при преобразовании входных сигналов и индикации, °C	
- температуры теплоносителя	$\pm 0,25$
- разности температур теплоносителя	$\pm 0,1$
Пределы допускаемой погрешности ЭБ при преобразовании вход-	
ных сигналов и индикации избыточного давления теплоносителя,	
приведенной к верхнему пределу измерений, %	$\pm 0,5$
Пределы допускаемой абсолютной погрешности теплосчетчиков	
при измерении температуры теплоносителя, °C, не более	$\pm (0.6 + 0.004 \cdot t)$
Пределы допускаемой абсолютной погрешности теплосчетчиков	
при измерении разности температур теплоносителя, °C не более Пределы допускаемой приведенной погрешности теплосчетчиков	$\pm(0.1+0.001\cdot\Delta t)$
при измерении давления, %, не более	$\pm 0,5$
Диапазон температуры теплоносителя, °С	от 1 до плюс 150
Максимальное рабочее давление теплоносителя, МПа	1,6
Напряжение питания, В	3,6
Потребляемая мощность, Вт, не более	0,2
Габаритные размеры электронного блока, мм, не более	120x110x80
Масса электронного блока, кг, не более	0,7
Степень защиты	IP67
Средняя наработка на отказ, ч	73000
Средний срок службы, лет, не менее	12
Условия эксплуатации:	
- температура окружающего воздуха, °С	от плюс 5 до плюс 50
- относительная влажность, %	до 95
- атмосферное давление, кПа	от 84 до 106,7

Знак утверждения типа

наносится на лицевую сторону корпуса теплосчетчика методом плоской фотопечати и в центре титульного листа руководства по эксплуатации типографским способом.

Комплектность средства измерений

Комплект поставки в соответствии с таблицей 4.

Таблипа 4

Наименование	Обозначение	Кол. шт.	Примечание
TECC 00.030.02	Теплосчетчик СТУ-1 Модель 3	1	по заказу
	в том числе:		
ИЯКН.433.645.003 ТУ	Пьезоэлектрический преобразователь ПЭП-3,	2/4/8*	по заказу
	ПЭП-6 (ЗАО Фирма «ТЕСС-Инжиниринг», г.		
	Чебоксары)		
	Арматура для крепления пьезопреобразовате-	2/4/8*	по заказу
	лей	*	
ТЕСС ПП14, ТЕСС П15	УПР с DN от 15 по 1600 мм	1/2/3/4	по заказу
TECC 00.030.03 PЭ	Теплосчетчики СТУ-1 Модель 3. Руководство	1	
	по эксплуатации		
TECC 00.030.03 MΠ	Инструкция. ГСИ. Теплосчетчики СТУ-1 Мо-	1	
	дель 3. Методика поверки.		
ТЕСС 00.030.03 ИМ	Инструкция по монтажу изделия на месте его	1	
	применения. Теплосчетчики СТУ-1 Модель 3		
ТУ 421107017113168-95	Комплект термометров платиновых разност-	1	по заказу
	ных КТСП-Н(Р) (ООО "ЭЛТА", г. Санкт-		
	Петербург)		
ТЕСС 075_БП4_1	Блок питания БП-4 (ЗАО Фирма «ТЕСС-	1	по заказу
	Инжиниринг»)		
ER 34615	Литиевая батарейка 3,6 В; 16 А/Ч	1	
TV//212 0// 1900//97	Посебоснования мебечностью постоями	1	
TY4212-044-18004487- 2003	Преобразователи избыточного давления	1	по заказу
	МИДА-ДИ-13П (СП МДУ, г.Ульяновск)		
* поставка осущест	вляется для двух/четырехканального бес	трубног	о варианта

теплосчетчиков;

Поверка

осуществляется в соответствии с документом ТЕСС 00.030.03 МП «Инструкция. ГСИ. Теплосчетчики СТУ-1 Модель 3. Методика поверки.», утвержденным ГЦИ СИ ФГУП «ВНИИР» 27 августа 2014 г.

Основные средства поверки:

- установка поверочная УПСЖ-50, диапазон расхода от 1,0 до 50 м³/ч, погрешность менее ± 0.3 %;
- частотомер электронно-счетный GFC-8131H, диапазон измеряемых частот от 0,005 Гц до 150 МГц, относительная погрешность по частоте кварцевого генератора $\pm 1.5 \cdot 10^{-7}$;
- генератор сигналов Г3-112/1, диапазон частот от 10 Гц до 10 МГц, погрешность установки частоты $\pm [2 + (30/f)]\%$;
 - секундомер СОП пр-2а-3-000 ТУ 25-1894.003-90;
- термометр стеклянный лабораторный ТЛ-4, цена деления 0,1°C, предел измерения 0-100 °C, ТУ 25-2021.003-88;
- угломер с нониусом 2-2, модель 127, ГОСТ 5378-88, диапазон измерений: внутренних углов - от 40 до 180 град., наружных углов - от 0 до 360 град., основная погрешность, не более 2;
- штангенциркуль ШЦ-1-150-0.05, ГОСТ 166-89, цена деления 0,05 мм, диапазон измерения 0-150 мм;
 - приспособление УТ-12 (кювета).

комплектуется держателем, спецгайкой, силиконовой прокладкой.

Сведения о методиках (методах) измерений

Сведения о методиках (методах) измерений приведены в руководстве по эксплуатации ТЕСС 00.030.03 РЭ.

Нормативные и технические документы, устанавливающие требования к теплосчетчикам СТУ-1 Модель 3

1 ГОСТ 8.374-2013 ГСИ. Государственная поверочная схема для средств измерений объемного и массового расхода (объема и массы) воды.

2 ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования.

3 ТЕСС 00.030.03 ТУ Теплосчетчики СТУ-1 Модель 3. Технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

осуществление торговли

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волоград (844)278-03-48 Волоград (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Краснодар (861)203-40-90 Курск (4712)77-13-04 Липецк (4742)52-20-81 Киргизия (996)312-96-26-47 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омек (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Казаустан (772)734-952-31

Пермь (342)205-81-47
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (3652)40-65-13
Таджикистан (992)427-82-92-69

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (4212)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://tess.nt-rt.ru/ || tss@nt-rt.ru